Are the Digits of P1 Random?

David H. Bailey
Lawrence Berkeley National Laboratory
Berkeley, CA, USA 94720
dhbailey@lbl.gov

Richard E. Crandall
Reed College
Portland, OR 97202

crandall@reed.edu



The First 1000 Decimal Digits of Pi

3.

1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273
7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094
3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132
0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235
4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859
5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303
5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989

There is at least one unusual feature in these digits. Can you find it?



A Brief History of Pi

2000 BCE Babylonians
550 BCE ~ Hebrews (1 Kings 7:23)
250 BCE  Archimedes

150 Ptolemy

480 Tsu Ch'ung Chi
1593 Viete

1665 Newton

1706 Machin

1767 Lambert and Legendre
1874 Shanks

1882 Lindemann

1961 Shanks and Wrench
1973 Guilloud and Bouyer
1976 Brent and Salamin
1986 Borweins

1989 Chudnovskys

1997 3 authors

1997 3 authors

1999 Kanada and Tamura
1999 Percival

= 3.125.
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3.1418

3.14166
3.1415926
3.1415926536

7 to 16 decimal places

T
T
T
T
T
T

R X Q&

7 to 100 decimal places

Proved 7 is irrational

7 to 527 decimal places

Proved 7 is transcendental

7 to 100,000 decimal places

7 to one million decimal places

Quadratically convergent algorithm for 7

Quartically (fourth order) convergent algorithm for
7 to one billion decimal places

Algorithm for computing n-th hexadecimal digit of 7
Hexadecimal digits of 7 starting at 10 billionth digit
7 to 206 billion decimal places

Hexadecimal digits of 7 starting at 1.25 trillionth digit



Normality

The real number « is normal to base b if every sequence of £ consecutive digits
in the base-b expansion of o appears with limiting frequency b=%. We say that
a is absolutely normal if o is normal to every integer base b > 2.

Widely believed to be absolutely normal:

o and e

o log 2 and /2

e the golden mean 7 = (1 ++/5)/2
e cvery irrational algebraic number

e many other “natural” irrational constants

But there are mo proots — not for any of these constants. not for any base.
Even a weaker “digit-dense” property has not been established for any of these
constants. Normality proofs exist only for artifically constructed constants such

as 0.1234567891011121314...



Two Questions

1. Let zg = 0, and
1
T, = Aw&zL + v mod 1
n
Is (x,,) equidistributed in [0, 1)?
2. Let g = 0 and

120n2 — 89n + 16
512n* — 1024n3 + 712n2 — 206n + 21

Is (x,,) equidistributed in [0, 1)?

r, = |16x,—1 +

mod 1



Consequences

If answer to Question 1 is “yes”, then log 2 is normal to base 2.

If answer to Question 2 is “yes”, then 7 is normal to base 16 (and hence to base
2 also).



Hypothesis A

Denote by r,, = p(n)/q(n) a rational-polynomial function, 0 < deg(p) < deg(q).
Let b be an integer, b > 2 and set xy = 0. Then the sequence

r, = (bxr,_1+r,) modl
either has a finite attractor or is equidistributed in [0, 1).
Theorem 1: Assuming Hypothesis A, each of the constants 7, log2, ((3)

is normal to base 2. Also, on Hypothesis A, if ((5) is irrational then it likewise
is normal to base 2.

This list of constants is merely representative — numerous other constants could
also be listed here.



Background: A New Formula for Pi

This formula was found in 1997 by a computer program, using the PSL() integer
relation algorithm:

W H A % w H H v
m = — — S
8k+1 8k+4 8k+5 8k+6

k=0 16
This formula may be used to compute the n-th hexadecimal (or binary) digit
of 7, without computing any of the first n — 1 digits.

Here is a formula of this same type for log 2:

~ 1

i1 k2k

Although this formula has been known for centuries, the connection to comput-
ing individual binary digits of log 2 was only very recently discovered.

log2 =



The BBP Algorithm for Computing Individual Hex Digits of Pi

Let S be the first of the four sums in the formula for «.

(16"S)) mod 1 = |3 070 o1 = (52 2070 g 1Y
mo = — | MO = NPT —— | 1110
! r=0 8k + 1 =08k +1 118k +1
n 16"% mod 8k + 1 < 16" F
= + | mod1
k=0 8k + 1 wnwui 8k +1

1. Compute each numerator of each term in the first sum using the binary algorithm for
exponentiation, reducing each product modulo 8% + 1.

Divide each numerator by its respective 8% + 1.
Sum the terms of the first series, discarding integer parts.
Compute the second sum (just a few terms are needed).

Add the two sum results, again discarding the integer part.

Repeat for Sy, Sy, S3, Sy, and calculate 457 — 25, — S5 — 5;.

L S o R

The resulting fraction, when expressed in hexadecimal format, gives the first few hex digits
of m beginning at position n + 1.

Ordinary 64-bit or 128-bit floating-point arithmetic suffices for these operations — multiple
precision arithmetic software is not required.



Some Computational Results

Hex Digits of 7
Position Starting at Position
10° 26C65E52CB4593
107 17AF5863EFED8D
108 ECB840E21926EC
109 85895585A0428B
1010 921C73C6838FB2
101 9C381872D27596
1.25 x 1012 07E45733CC790B

Thanks to Fabrice Bellard of France and Colin Percival of Canada.
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Some Other Constants with Base 2 BBP-Type Formulas

log 3

log 7

log*

72 — 6log*
T3

3
108
W
3
DO
7
_|_
=

300 1 [ 2 1
Mmmﬂﬂ%i m\iﬂwv
1 1 144 216 72 54 9
8264 \(6h+1)2  (6h+2)2  (6k+3)>  (Gk+42 ' (6k+5)
1 o 1 16 40 8 28
6 5 16° 8k +1)2 (8k4+2)2 (8k+3)2 (8k—+4)?

1 10 2 3
|@i%|@i%+@i%|@i%

1
12y > o
9 s 1 ( 16 8 2 1
W?é%A%i|%+w|%i|%+mv
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A Base 2 BBP-Type Formula for ((3)

< 1 p(k)
BN = X 1006 g(h)

where

Tp(m) 1 N 1 1 1
8q(m) — 2(1+8m)’  4(24+8m)® 16(3+8m)* 16(4+8m)’

1 1 1 3
128 (5 + 8 m)” " 256 (6 + 8 m)’ " 1024 (74 8m)” - (14 24m)°
21 3 15 3
- 3 wn_u 3 3
(2424m)®  2(3+24m)*  (44+24m)°  4(5+24m)
21 3 3 21

4(6+24m)>  8(T+24m)°  16(9+24m)*  16(10 +24m)’

3 15 3
— l_l —
32(11+24m)®  16(12+24m)° 64 (13 +24m)°
21 3 3

— + +
64 (14 +24m)>  128(15+24m)> 256 (17 + 24 m)°

21 3 15

— — +
256 (18 +24m)°  512(19+24m)° 256 (20 + 24 m)’
3 21 3

1024 (21 +24m)®  1024(224+24m)* 2048 (23 4 24 m)’

A similar, but even more complicated, formula exists for ((5).
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Some Base 3 BBP-Type Formulas

yomeWOOHA ! + H v

27 =0 81% \4k +1 = 4k +3
= 1

= L0 —)
, 2 = 243 405 81 27
AT AE\A T2 (12k+2)7  (12k+4)2  (12k +5)
72 9 9 5 1

T2k + 07 (12k+72  (12k+8)7  (12k+ 107 ' (12k + va

V3 x 1 3 1
6v3tan~' || = A v
Viatan AL &2 3+ 1 342

A Base 5 BBP-Type Formula

25 Q%Am??\&a o0 HA 5 1 v

2 —
2 51256 (57 + 55 Z 5 5k t+2 T hk+3
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Some Base 10 BBP-Type Formulas

log A ) v = WOU %
10 =1 k10F
log AH::::HV _ 108 > 1 A 10° N 107 P 1 v
387420489 =0 1019 {10k +1 10k +2 10k +9
cos™(9/10) X Dy
V19 B W k10%’

where in the last line, Dj satisty the recursion Dy = D1 =1, D1 = Dy —
5D 1.

Is There a Base 10 BBP-Type Formula for Pi?
None is known. In fact, no BBP-type formula is known for m except in base 16

(which can be used to compute digits in any power-of-two base). In this sense
16 can be thought of as the "natural” base for 7.

14



Do All BBP-Type Formulas Give Irrational Constants?

No. Examples:

oow H
HHMU AI | ‘v Amﬂﬁmmoo?smmcgv
ko k+1

8HAIm 8 4 8 2 Hv

0 = _
Wi% %+H+%+w+%+w+%+m+%+@ 8k +7

S| A —256 250 128 128 —128

) =
20065 \2ak 45 T ok 16 T2k 4T T oakh 19 24k + 10
e T (T S
a1l Tk 12 T oak 114 24k 116 T 24k 417 T 24k 4 18

|w |w |w |w H
o 19 T ok 120 T oak v o1 T 24k 4 2o J&iwwv

Further, by translating the indices of summation in any of these sums, an infinite
class of nonzero sums can also be produced. Sequences corresponding to these
formulas exhibit finite attractors, not equidistribution.
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Some Basic Lemmas

The notation {x} denotes the fractional part of z, i.e.  mod 1.

1.
2.

A number 2 is normal to base b iff the sequence ({b%2} : d =1,2,3,...)is equidistributed.

Assume z is normal to base b, and denote by r a nonzero rational number. Then rx is
normal to base b; moreover z is also normal to any base ¢ = 0".

. Assume a sequence (t,) has the property that t, — C as n — oo. Then a sequence

({x, +t,}) in [0, 1) is equidistributed iff (x,,) is.

Assume a sequence (t,) has the property that ¢, — C as n — oco. Then a sequence
({xn +t,}) in [0, 1) has a finite attractor iff (z,) does.

. Let e be real and b > 2 be an integer. If the sequence z = ({b"a}) has a finite attractor

W . then W is a periodic attactor, and each w; € W is rational.

. If the sequence (z,,) as defined for Hypothesis A has a finite attractor W, then W is a

periodic attractor, and each attractor point is rational.

The sequence ({b"«}) has a finite attractor iff « is rational.

16



Basic Theorem

Theorem 2. For a sequence z = (x,,) as defined in Hypothesis A, define a
real number o via a generalized polylogarithm series:

x 1 p(k)

O = _

k=1 b"q(k)
Then « is rational iff x has a finite (periodic) attractor.

Proof: From Lemma 6 we know that the sequence ({6"a}) has a periodic
attractor iff v is rational. Following the BBP strategy, we can write
n b p(k) < 0" (k)
b'at = d1
Wk =15 ak) s gy )M
= (x, +1,) mod 1

where x satisfies the recursion zy = 0, and

Lp — @&SIH =+ %g
q(n)
Provided that degp < degq as in Hypothesis A, we have t,, — 0. Hence it

follows from Lemma 4 that (z,,) has a periodic attractor iff «v is rational.

17



Proof of Theorem 1

Theorem 1: Assuming Hypothesis A, each of the constants 7, log2, ((3)
is normal to base 2. Also, on Hypothesis A, if ((5) is irrational then it likewise
is normal to base 2.

Proof. Fach of the constants m, log2, ((3) is known to be irrational. Base 2
BBP-type formulas are known for each. Hence by Theorem 2. their associated
sequences do not have periodic attractors. Thus, assuming Hypothesis A, their
associated sequences are equidistributed. so that they are normal to base 2.

18



An Illustration of Theorem 1

Recall that

low 2 ~ 1
0g2 = —
5 k=1 k2F
Let a;, be the binary expansion of log 2 after n digits. Then we can write
~ MSI\A
a, = {2"log2} = —— mod 1
2"log2} = ¥ ——mo
n 2" % mod k x 2Nk
= | X mod 1+ Y ——|mod]l
k=1 k k=nt+1 k

= (r, +1,) mod 1

where ¢, — 0, and z,, satisfies the recursion xy = 0,

1
T, = 2r,+—
n

log 2 is known to be irrational. Thus if Hypothesis A could be establish, it would
follow that (x,,) is equidistributed, and that log 2 is normal.
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Can We Relax the Conditions of Hypothesis A?

1. Hypothesis A requires that o = 0 (or at least some rational value). Consider
the sequence associated with log 2, namely

1
x, = 2x,-1+—mod 1
n

with zg = 1—log 2 instead of 0. The resulting sequence is not equidistributed
— 1in fact, it converges to zero.

2. Hypothesis A requires that the perturbation term r, be the quotient of two
. . 2
polynomials. Suppose we were to allow expressions such as r, = 1/2" 7"
In this case the associated constant 1s

< 1
o = Y

2
n=1 2"

which is clearly irrational, but not normal to base 2.
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A Curious Phenomenon in the Pi Iteration

Consider the binary sequence y; = |2z} |, where x;. is the iteration for log 2:

1
T = AMMSTH + Mv mod 1

The sequence (y;) agrees well with the true binary digits of log 2 — fifteen of
the first 200 digits are incorrect, but only one in the range 5000 — 8000.

Now consider let y; = |16z} |, where x;. is the iteration for

6 N 120k2 — 89k + 16 1
T = Ti_ 11O
g P B0k Z 1024k3 + T12k2 — 206k + 21

In this case, the hex sequence (y;) appears to agree exactly with the true hex
digits of m — there are no errors in the first 100,000 digits.
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A Connection to Pseudorandom Number Generators

Consider the canonical case a = log 2. One can write

. 271 mod 1 2772 mod 2 1
{2%a} = + 4o = A tg| mod 1
1 2 d
Now fix an integer D, and consider this iteration:
2= mod 1 2%7% mod 2 2"~ mod D
R(D, k) = ME + ws et ws mod 1.

As k advances, this is a sum of normalized linear congruential pseudorandom
number generators.

Question: What is the period of this type of “cascaded” pseudorandom number
generator? FEmpirical studies suggest it increases exponentially with D, but we
have no rigorous results. More research is needed here.
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Open Questions

e [s there a natural generalization perturbation function r,, in Hypothesis A7

e Can we apply more of the theory of ergodic systems and chaotic-dynamic
maps to these questions?

e Can we develop a more complete theory of the special instances in which a
generalized polylogarithm series has a rational sum?

e Can we make more inroads into the theory of cascaded linear congruential
pseudorandom number generators?

e Can we obtain formal bounds on the lengths of periods produced by cascaded
pseudorandom number generators?

e Can we deal with algebraic irrationals (such as /2 and the golden mean 7)
in this theory?
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For Full Details

See the manuscript “On the Random Character of Fundamental Constant Ex-
pansions’, which is available from either of our web sites

http://www.nersc.gov/“dhbailey
http://www.perfsci.com

A second paper, “Random Generators and Normal Numbers”, will be available
soon from these same web sites.
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